Many-body Green's function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer.
نویسندگان
چکیده
We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.
منابع مشابه
Many-body Green's function theory for electron-phonon interactions: Ground state properties of the Holstein dimer.
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing e...
متن کاملJustifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy...
متن کاملF-electron spectral function of the Falicov-Kimball model in infinite dimensions: The half-filled case
The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization along the Kadanoff-Baym contour and to the maximum cutoff in time that i...
متن کاملSolving the Kadanoff-Baym equations for inhomogeneous systems: application to atoms and molecules.
We implement time propagation of the nonequilibrium Green function for atoms and molecules by solving the Kadanoff-Baym equations within a conserving self-energy approximation. We here demonstrate the usefulness of time propagation for calculating spectral functions and for describing the correlated electron dynamics in a nonperturbative electric field. We also demonstrate the use of time propa...
متن کاملEarly-stage relaxation of hot electrons by LO phonon emission
Ultrafast spectroscopy gives insight into the relaxation and dephasing of electrons during the first femtoseconds after an optical excitation. A theoretical description of this early-time regime requires a proper treatment of retardation effects for the different scattering processes. The scattering of electrons by optical phonons is investigated within the S-matrix formalism. This perturbative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 143 23 شماره
صفحات -
تاریخ انتشار 2015